Modified L1 Adaptive Control Design for Satellite FMC Systems with Actuators Time Delay
نویسندگان
چکیده مقاله:
A modified method for satellite attitude control system in presence of novel actuators is proposed in this paper. The attitude control system is composed of three fluidic momentum controller (FMC) actuators that are used to control Euler angles and their dynamics is considered in satellite attitude equations as well. L1 adaptive control is utilized for satellite three-axial stabilization. A significant characteristic of L1 adaptive control structure is that robustness is guaranteed in presence of fast adaptation. The main achievement of this controller is that the error norm is inversely proportional to the square root of adaptation gains. Therefore, large values of gains provides some advantages. The proposed L1 adaptive control is designed based on simplified attitude dynamic equations without satellite coupling effects, and then it is placed on coupled nonlinear equations. Next, the impact of available delay on FMC actuators is investigated. Simulation results suggest that the system remains stable with the assumption of actuators time delay, but it experiences some oscillations in Euler angles, control inputs and angular velocities. In order to solve this problem, a modified L1 adaptive control system including a predictive observer with high estimation speed is used. Finally, it is recognized that the available oscillations are reduced even when the actuator time delay increases and thus the control system’s performance improves.
منابع مشابه
ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملA New Method for Time-Delay Compensation in Control Systems
In this paper a new method is introduced and investigated for removing the destabilizing effects of time-delay parameter in control loops. The concept of the method is taken from the knowledge concerning the dynamic behaviour of irrational transfer functions (Ir-TF), which is discussed and investigated elswhere in frequency response domain and is explained briefly here. Ir-TFs, which are we...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملDirect Adaptive Control for Nonlinear Uncertain Systems with Time Delay
A direct adaptive control framework for nonlinear uncertain delay dynamical systems is developed. The proposed framework is Lyapunov-Krasovskii-based and guarantees asymptotic stability with respect to the plant states. Specifically, if the nonlinear system is represented in normal form, then it is shown that nonlinear adaptive controllers can be constructed without requiring knowledge of the s...
متن کاملA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 11
صفحات 1982- 1990
تاریخ انتشار 2018-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023